

Génie Electrique et Electronique
Master Program
Prof. Elison Matioli

EE-557 Semiconductor devices I

Charge Transport

Outline of the lecture

- Charge Transport
- thermal velocity
- Carrier transport: drift and diffusion

Read Chapter 4 of the reference book (on moodle)

References:

- J. A. del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (<http://ocw.mit.edu/>)

Key questions

- Are carriers sitting still in thermal equilibrium?
- How do carriers move in an electric field?
- How do the energy band diagrams represent the presence of an electric field?
- How does a concentration gradient affect carriers?

Carrier flow in semiconductors

Any **motion of free carriers** in a semiconductor leads to a **current**.

Drift:

This motion can be caused by an **electric field** due to an externally applied voltage (electric field), since the carriers are charged particles. We will refer to this transport mechanism as **carrier drift**.

Ex: n-channel MOSFET

Diffusion:

In addition, carriers also move from regions where the **carrier density is high** to regions where the **carrier density is low**. This carrier transport mechanism is due to the thermal energy and the associated random motion of the carriers. We will refer to this transport mechanism as **carrier diffusion**.

Ex: npn bipolar transistors

The **total current** in a semiconductor equals the **sum** of the **drift and the diffusion** currents.

What happens with electrons at a given temperature without electric field?

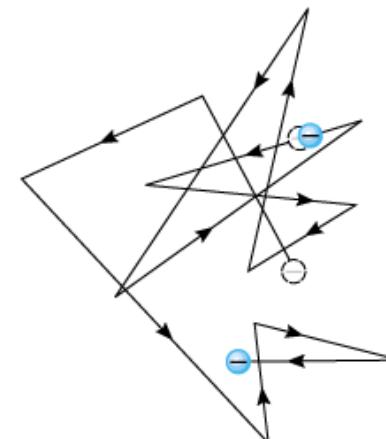
We can think of carriers as particles in **an ideal gas**.

At finite T, carriers have **finite thermal energy**. All this energy resides in the **kinetic energy** of the particles.

Carriers move in **random directions**: no net velocity, but average carrier velocity is thermal velocity:

$$v_{th} = \sqrt{\frac{8 kT}{\pi m_c^*}}$$

Zero electric field



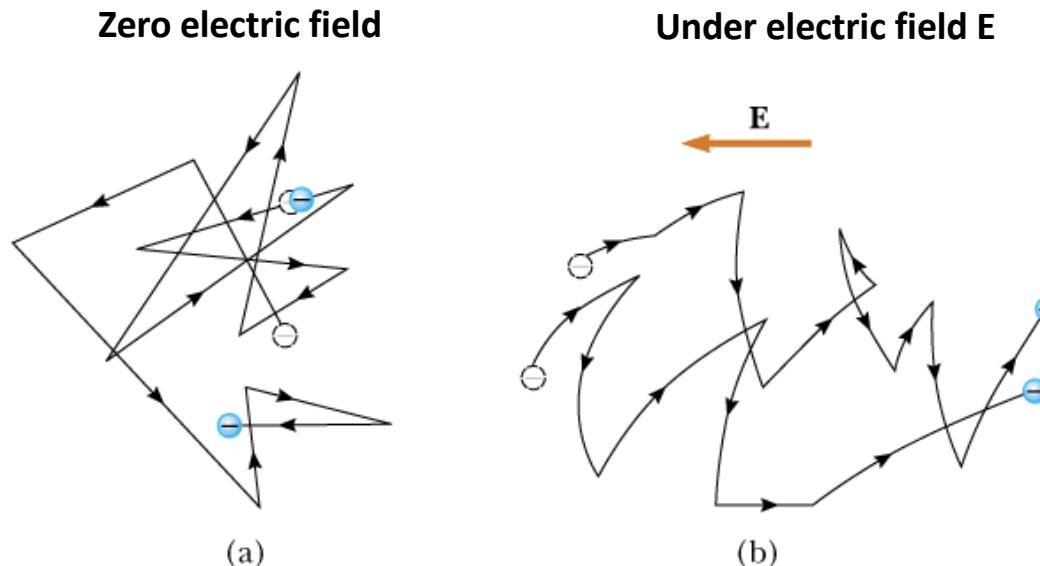
m_{ce}^* **conductivity effective mass** [$eV \cdot s^2/cm^2$]

- This is the effective mass that connects the kinetic energy of an electrons with its velocity
- It accounts for all interactions between the carriers and the perfect periodic potential of the lattice.
- m_{ce}^* and m_{ch}^* are different from the effective mass from the density of states (you can find the values in appendix B on moodle)

For electrons in Si at 300 K ($m_{ce} = 0.28m_o$) and $v_{the} = 2 \times 10^7 \text{ cm/s}$

But... **semiconductor crystal is not perfect:**

- Atoms themselves are vibrating around their equilibrium position in the lattice
- There are impurities and crystal imperfections.
As carriers move around, they suffer frequent collisions: **scattering**



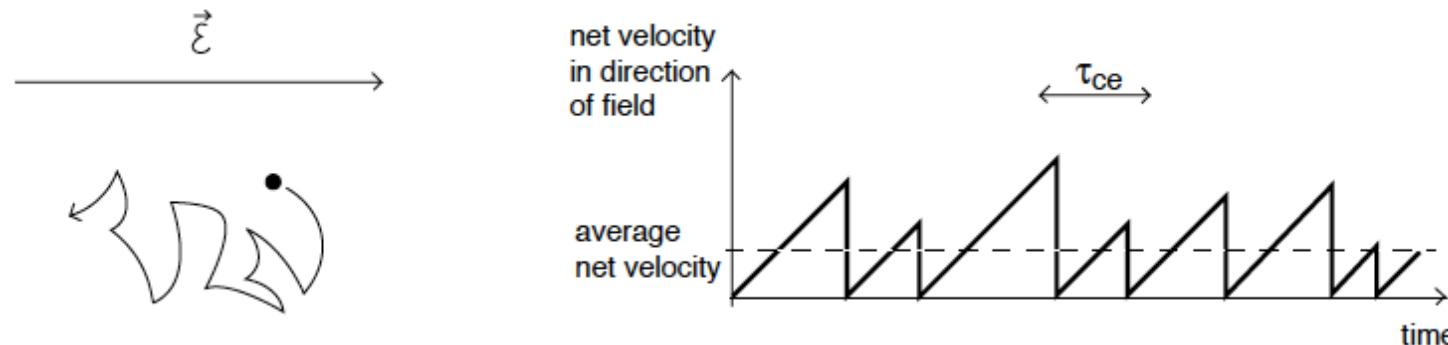
- Mean free path, l_{ce} :** average distance travelled between collisions [cm].
- Scattering time, τ_{ce} :** average time between collisions [s].

$$l_{CE} = \frac{\pi}{4} v_{th} \tau_{CE}$$

Scattering mechanisms:

1. **Lattice or phonon scattering:** carriers collide with vibrating lattice atoms
phonon absorption and emission
⇒ some energy exchanged (\sim tens of meV)
2. **Ionized impurity scattering:** Coulombic interaction between charged impurities and carriers
⇒ no energy exchanged
3. **Neutral impurity scattering** with neutral dopants, interstitials, vacancies, etc
4. **Surface scattering** in inversion layer (surface roughness)
5. **Carrier-carrier scattering (important when carrier concentration is high)**
Order of magnitude of $\tau_c < 1$ ps
Then, order of magnitude of $l_c < 50$ nm

In the presence of an electric field, electrons drift:



Drift velocity

$$v_e^{drift} = -\frac{q\mathcal{E}\tau_{ce}}{m_{ce}^*}$$

$$v_e^{drift} = -\mu_e \mathcal{E}$$

$$\mu_e \equiv \text{electron mobility } [cm^2/V \cdot s]$$

Electron mobility: Corresponds to the **ease of carrier motion** in response to E . It depends on the **strength of the scattering mechanisms**.

In the presence of an electric field, electrons drift:

$$v_e^{drift} = -\mu_e \mathcal{E}$$

$$v_h^{drift} = \mu_h \mathcal{E}$$

Mobility depends on:

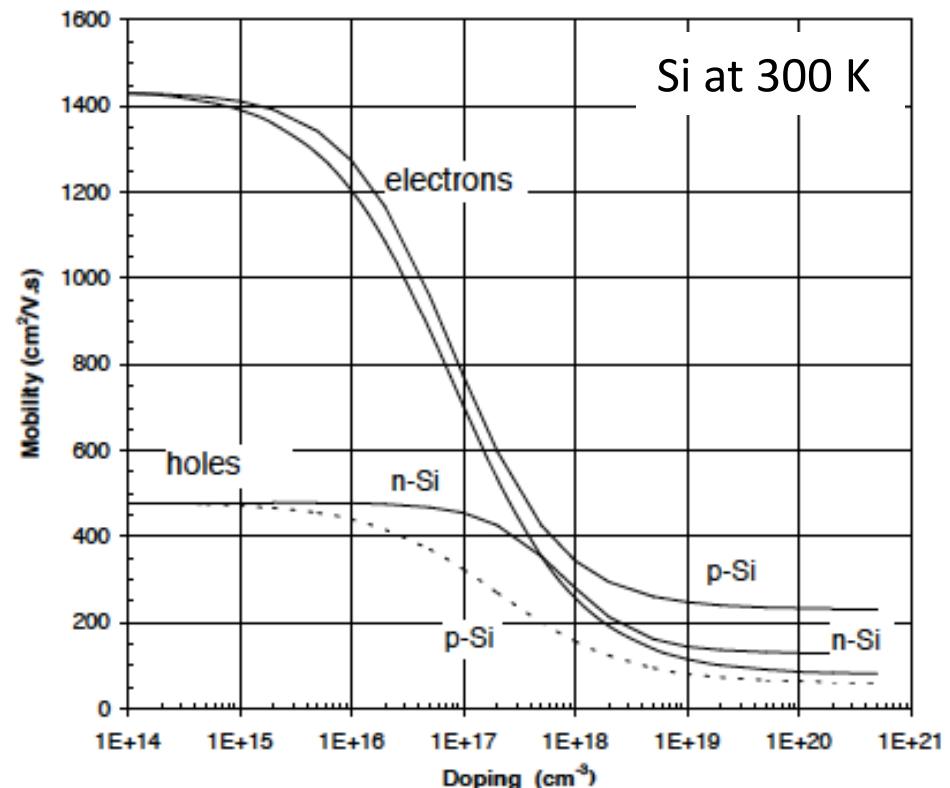
- **doping level**
- whether carrier is **majority** or **minority-type**.

at low n :

- Mobility is limited by phonon scattering
- thus independent of doping.

at high n :

- Mobility is limited by ionized impurity scattering;
- It is not a strong function of the type of dopant, but only on its concentration.
- Typically, attractive scattering is more pronounced than repulsive: majority carriers have lower mobility



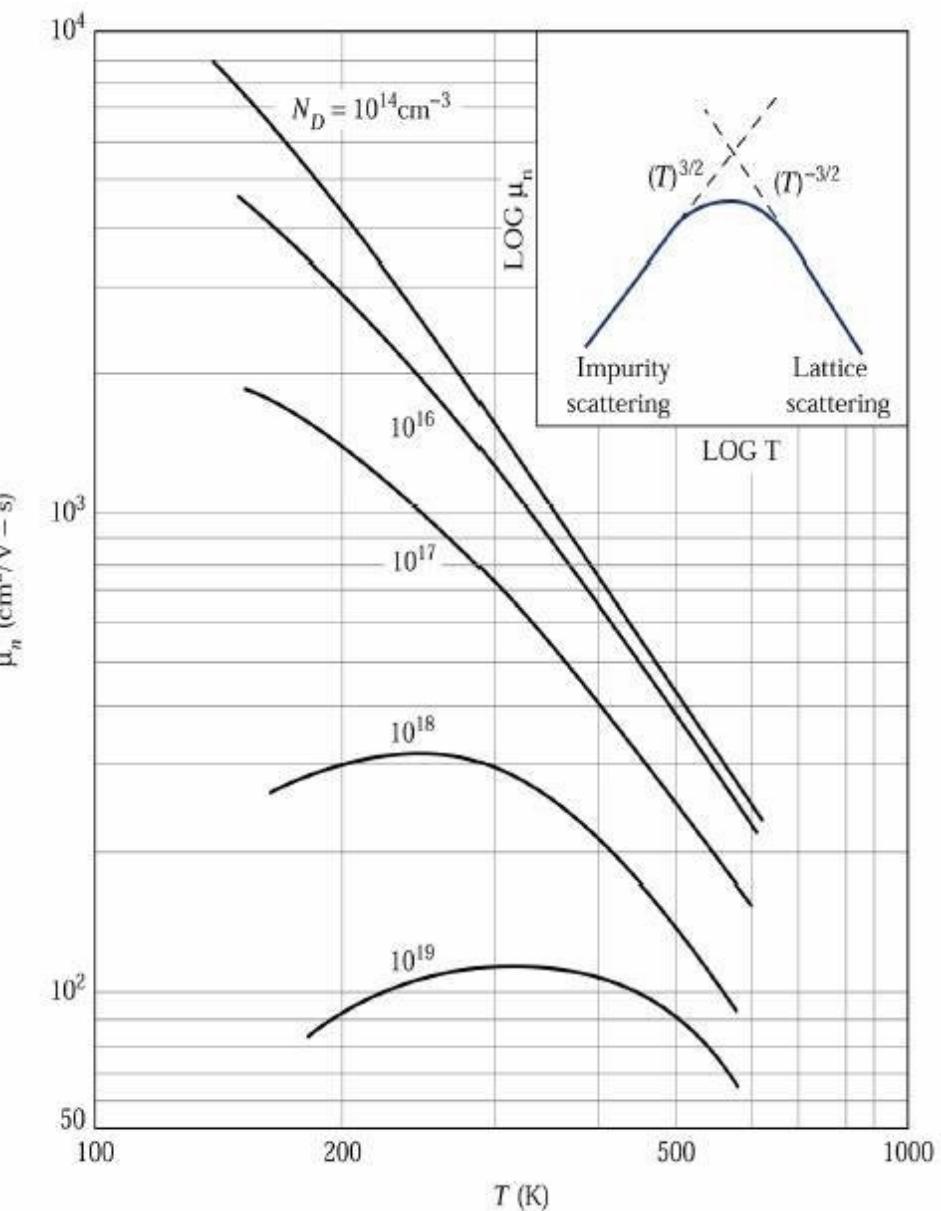
Increasing temperature and increasing doping results in reduction of mobility.

Increasing temperature: increases the number of phonons, which increases the probability that an electron will be scattered by a phonon.

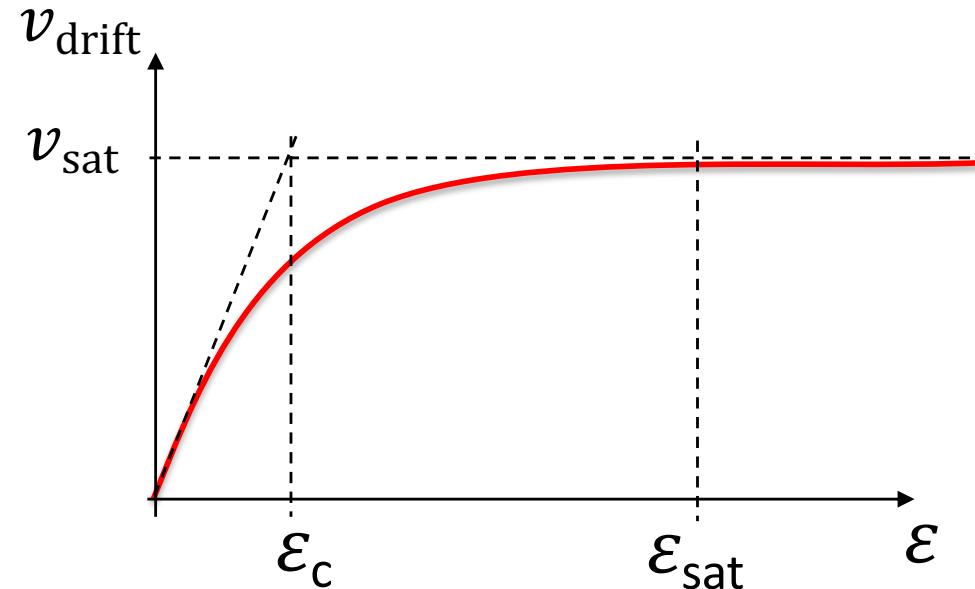
Increasing doping: each dopant atom can scatter electrons.

Thus:

higher doping level \rightarrow lower mobility
higher temperature \rightarrow lower mobility



The linear relationship between drift velocity and electric field is no longer valid at high fields



Drift velocity vs. electric field fairly well described by:

$$v^{drift} = \mp \frac{\mu \mathcal{E}}{1 + |\frac{\mu \mathcal{E}}{v_{sat}}|}$$

Field required to saturate velocity:

$$\mathcal{E}_c = \frac{v_{sat}}{\mu}$$

$$\mathcal{E}_{sat} = 9\mathcal{E}_c$$

Velocity saturation crucial in modern devices:

if $\mu = 500 \text{ cm}^2/\text{V.s}$, $\mathcal{E}_{sat} = 2 \times 10^4 \text{ V/cm}$ (2V across 1 μm)

Since μ depends on doping, \mathcal{E}_{sat} depends on doping too.

The **linear relationship** between drift velocity and electric field **breaks at high fields**

Implicit assumption:

quasi-equilibrium, that is, scattering rates not much affected from equilibrium.

$$v^{drift} \sim \mathcal{E} \quad \text{only if} \quad v^{drift} \ll v_{th}$$

For **high E** : carriers acquire substantial energy from E
→ optical phonon emission strongly enhanced

scattering time: $\sim 1/\mathcal{E}$

Drift velocity saturates at

$$v_{sat} \simeq \sqrt{\frac{8}{3\pi} \frac{E_{opt}}{m_c^*}}$$

Mobility depends on doping level and whether carrier is majority or minority-type.

For Si at 300 K:

- $v_{sat} \sim 10^7 \text{ cm/s}$ for electrons
- $v_{sat} \sim 6 \times 10^6 \text{ cm/s}$ for holes

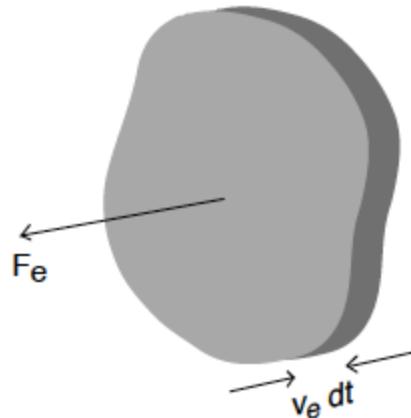
Particle flux and current density

particle flux \equiv # particles crossing unity surface (normal to flow) per unit time [$cm^{-2} \cdot s^{-1}$]

current density \equiv electrical charge crossing unity surface (normal to flow) per unit time [$C \cdot cm^{-2} \cdot s^{-1}$]

$$J_e = -qF_e$$

particle flux: $F_e = \frac{nv_e dt}{dt} = nv_e$



Electron and hole current density:

$$J_e = -qnv_e$$

$$J_h = qp v_h$$

Drift current

Drift current (low fields):

$$J_e = q\mu_e n \mathcal{E}$$

$$J_h = q\mu_h p \mathcal{E}$$

Total current:

$$J = q(\mu_e n + \mu_h p) \mathcal{E}$$

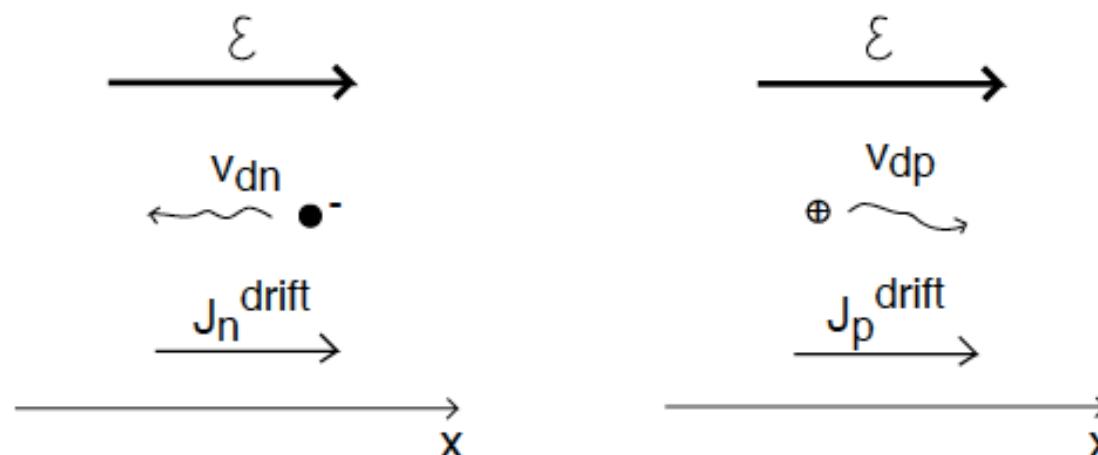
Ohm's law for semiconductors

Electrical conductivity $[(\Omega \cdot cm)^{-1}]$:

$$\sigma = q(\mu_e n + \mu_h p)$$

Electrical resistivity $[\Omega \cdot cm]$:

$$\rho = \frac{1}{q(\mu_e n + \mu_h p)}$$



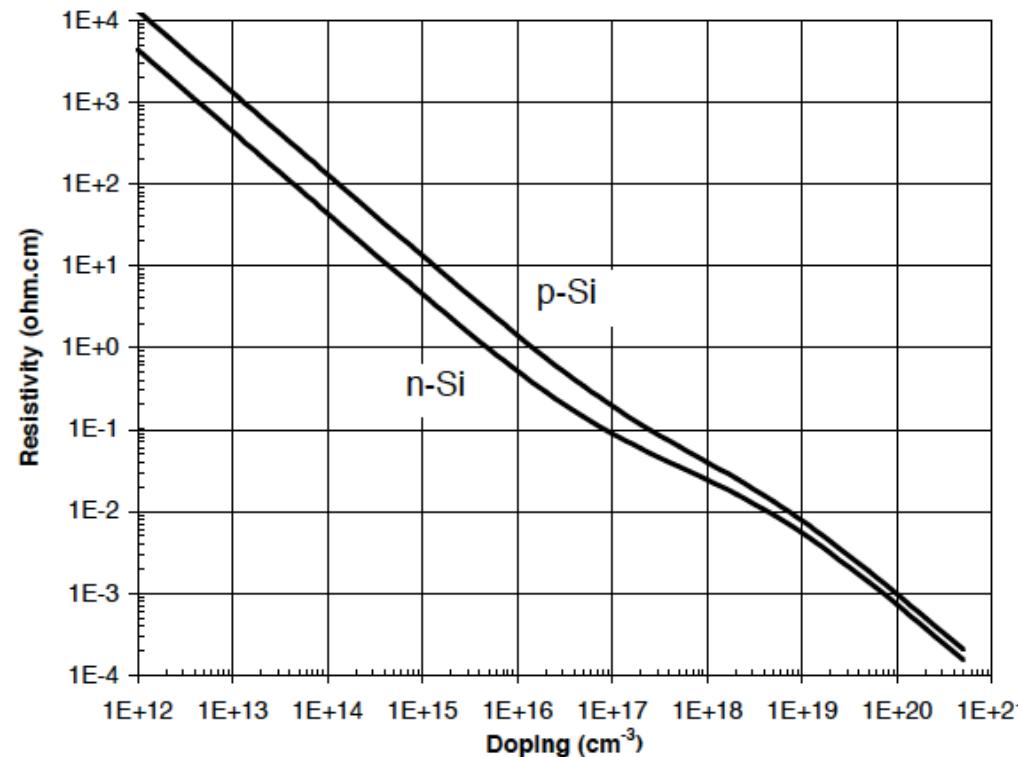
ρ strong function of doping \Rightarrow

frequently used by wafer vendors to specify doping level of substrates

$$\text{-for n-type: } \rho_n \simeq \frac{1}{q\mu_e N_D}$$

$$\text{-for p-type: } \rho_p \simeq \frac{1}{q\mu_h N_A}$$

Si at 300K:



Drift current (**high fields**):

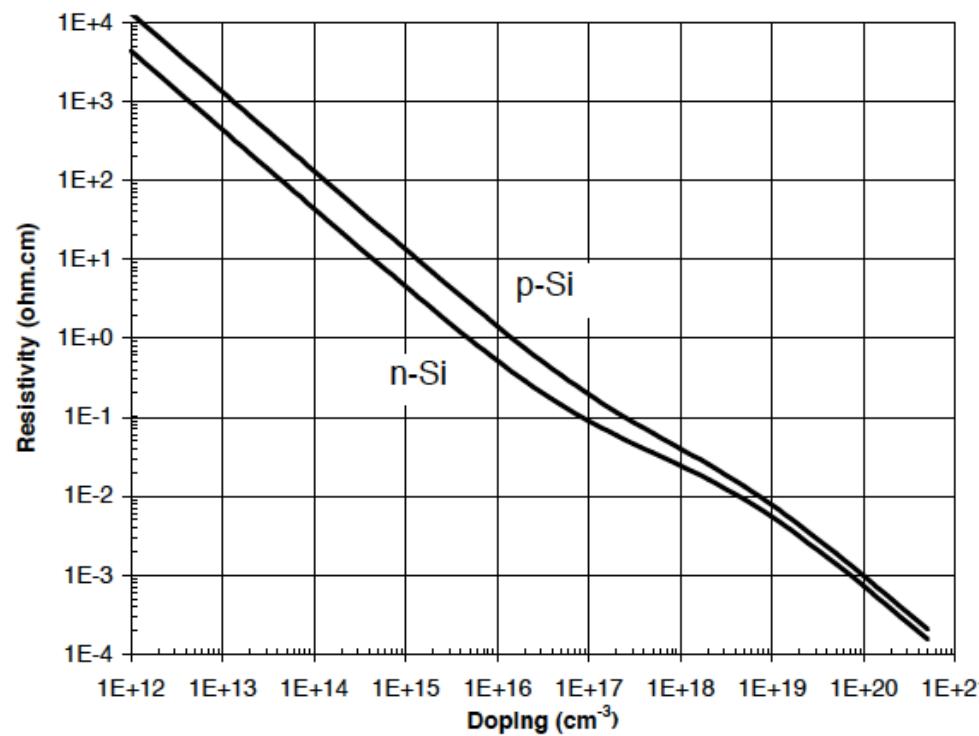
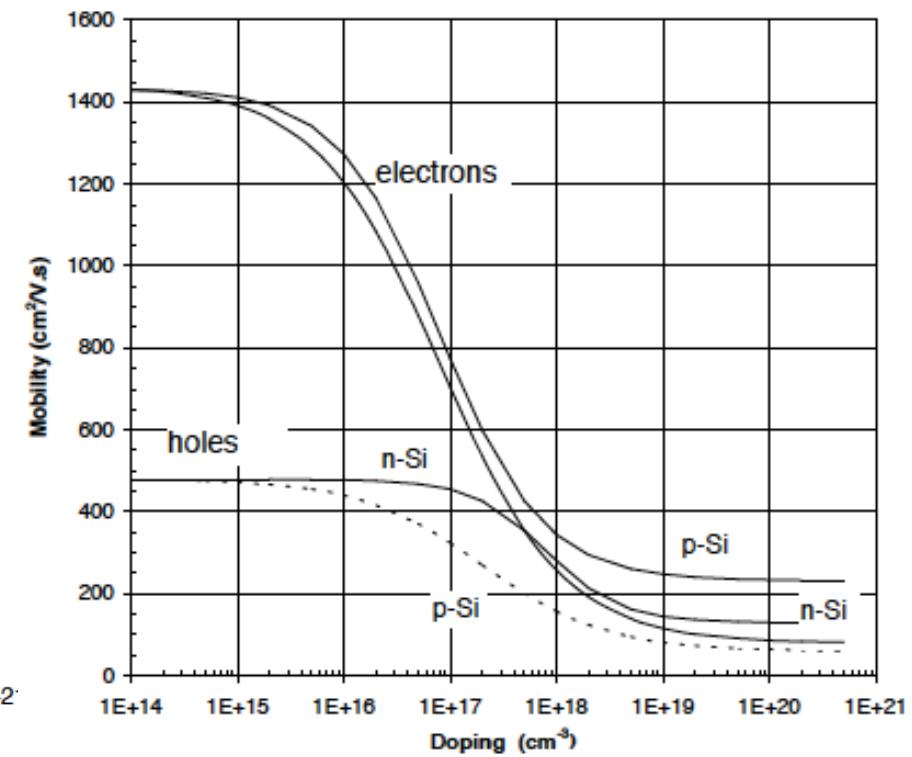
$$J_{esat} = qn v_{esat}$$

$$J_{hsat} = qp v_{hsat}$$

The only way to get **more current at high fields** is to **increase carrier concentration**.

Estimate the electrons and holes drift velocity, for a n-type Si with resistivity of 0.1 ohm cm and under an applied field of 1000 V/cm.

Si at 300K:



Sheet resistance

The **sheet resistance** concept is used to characterize both wafers and thin doped layers, since it is typically **easier to measure than the resistivity** of the material.

The sheet resistance of a uniformly doped layer with resistivity, ρ , and thickness, t , is given by their ratio:

$$R_s = \frac{\rho}{t}$$

While the unit of the sheet resistance is Ohms, one refers to it as **Ohms per square**.

This nomenclature comes in handy when the resistance of a rectangular piece of material with **length**, L , and **width W** must be obtained. It equals the product of the sheet resistance and the number of squares or:

$$R = R_s \frac{L}{W}$$

Transmission line method (TLM)

technique to determine the sheet resistance and contact resistance

The sheet resistance of a doped layer with resistivity, ρ , and thickness, t , is:

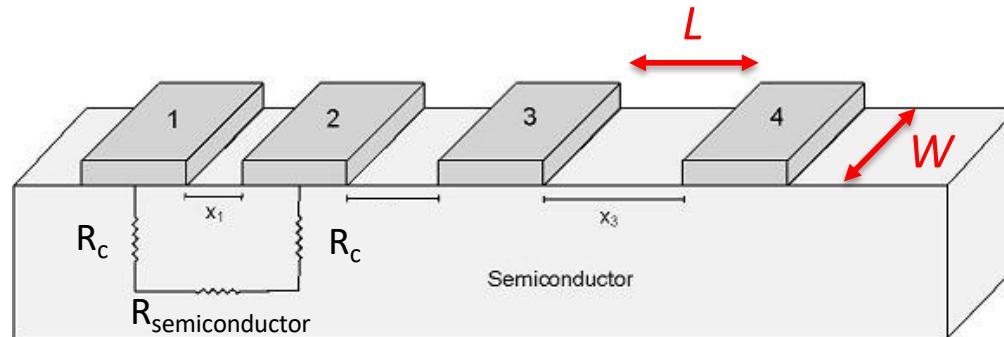
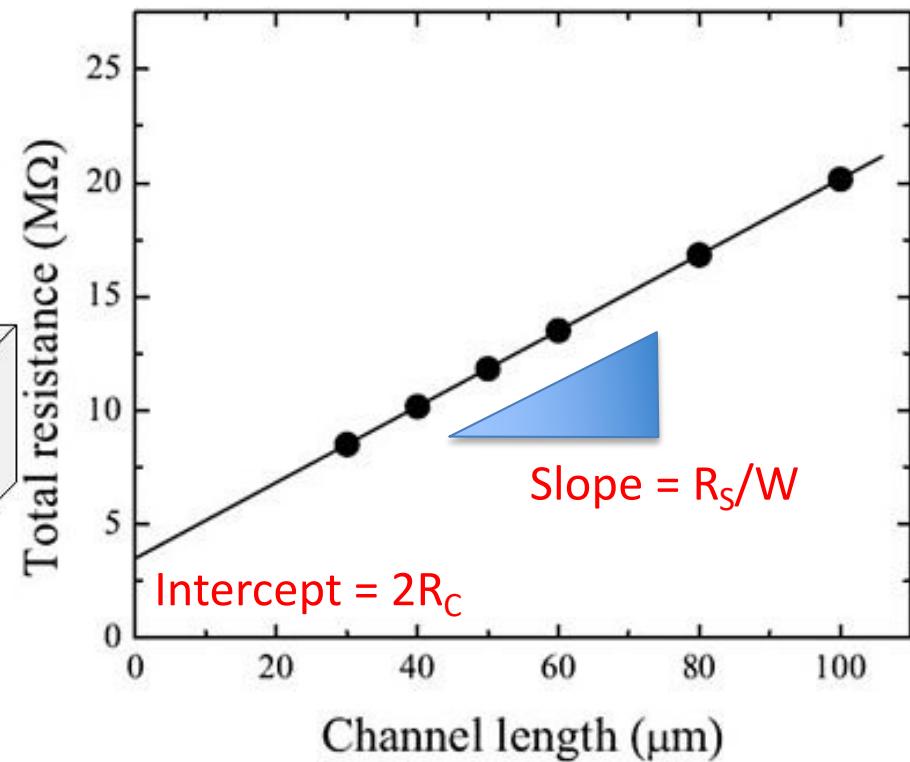
$$R_s = \frac{\rho}{t}$$

The resistance of a rectangular piece of material with length, L , and width W

$$R = R_s \frac{L}{W}$$

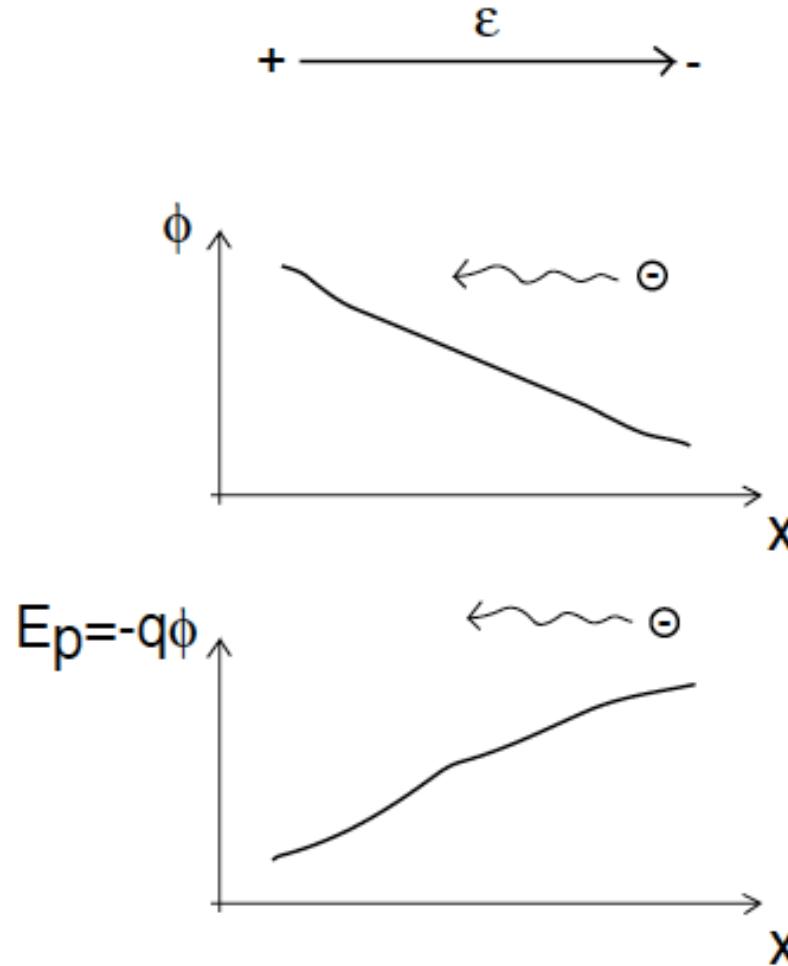
Taking into account the contact resistance (R_c):

$$R = 2R_c + R_s \frac{L}{W}$$



Energy band diagram under electric field:

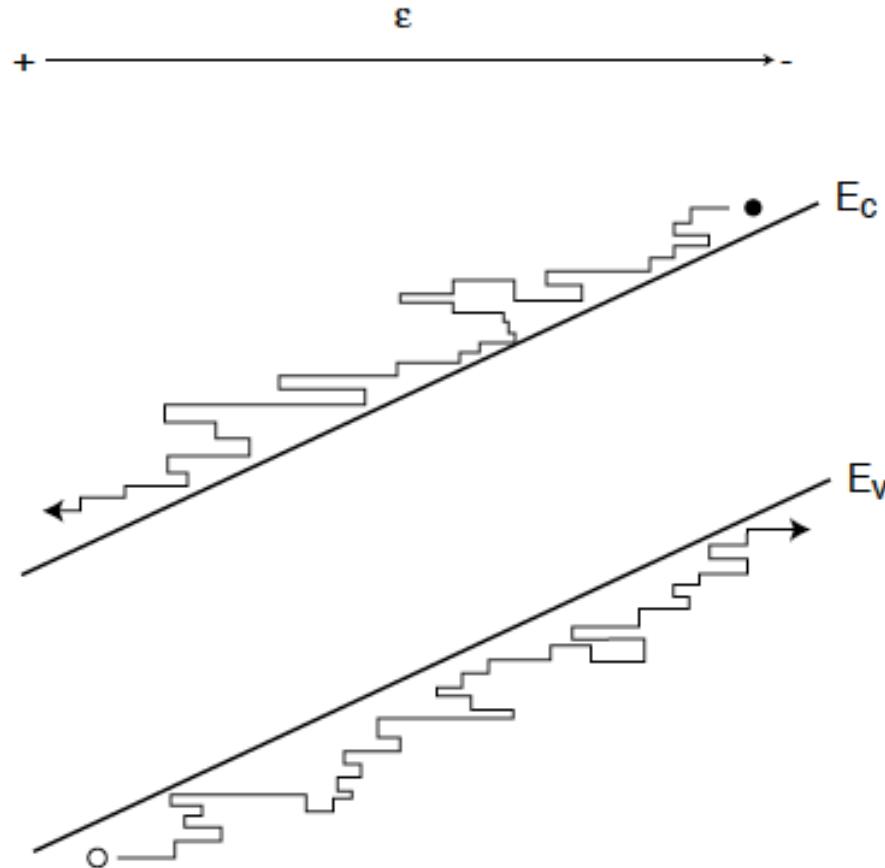
Energy band diagram needs to account for potential energy of electric field



Electron trades potential energy by kinetic energy as it moves to the left
 \rightarrow total electron energy unchanged

Energy band diagram is picture of electron energy

⇒ must add E_p to semiconductor energy band diagram ⇒ bands tilt: **Band bending**



Measuring from an arbitrary energy reference:

$$E_c + E_{ref} = E_p = -q\phi$$

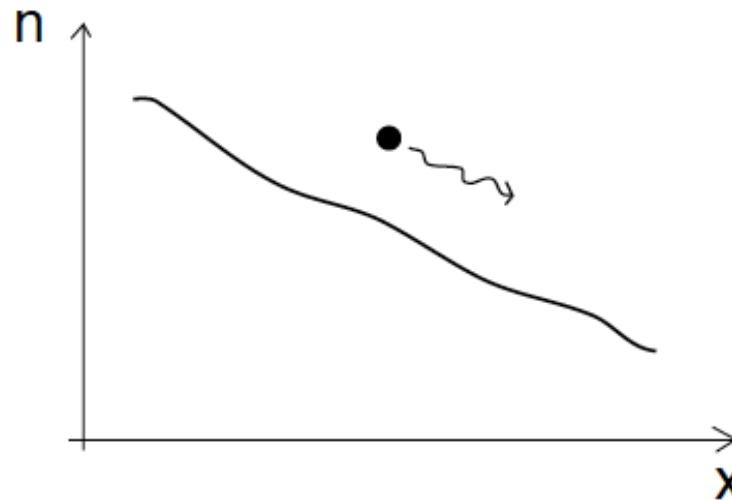
$$\mathcal{E} = -\frac{d\phi}{dx} = \frac{1}{q} \frac{dE_c}{dx} = \frac{1}{q} \frac{dE_v}{dx}$$

Shape of energy bands = shape of ϕ with a minus sign.

Can easily compute E from energy band diagram.

Movement of particles from regions of **high concentration** to regions of **low concentration**.

Diffusion produced by collisions with background medium (*i.e.*, vibrating Si lattice).



Diffusion flux is proportional to the gradient of concentration [Fick's first law]

$$F_e = -D_e \frac{dn}{dx}$$

$$F_h = -D_h \frac{dp}{dx}$$

$$D \equiv \text{diffusion coefficient } [cm^2/s]$$

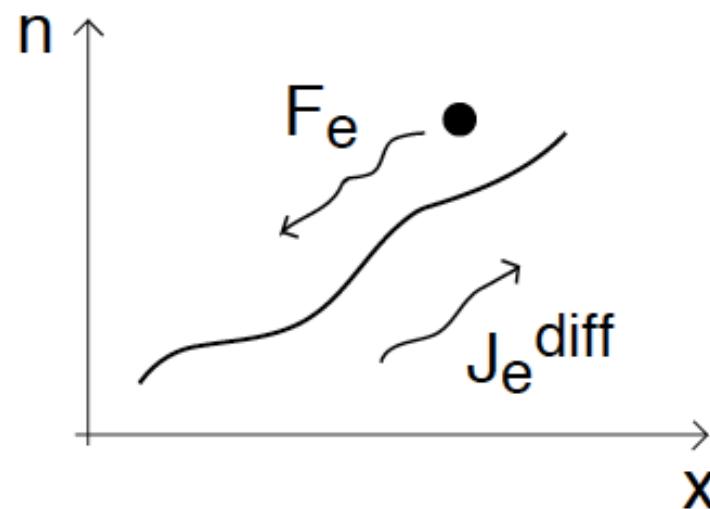
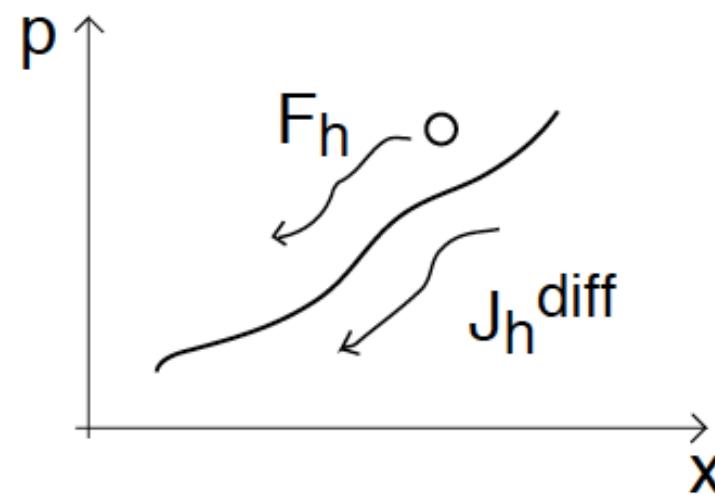
Diffusion current: Electrons and holes are charged particles and their diffusion creates current

$$F_e = -D_e \frac{dn}{dx}$$

$$F_h = -D_h \frac{dp}{dx}$$

$$J_e = q D_e \frac{dn}{dx}$$

$$J_h = -q D_h \frac{dp}{dx}$$



In summary:

μ relates to "ease" of carrier drift in an electric field.

D relates to "ease" of carrier diffusion as a result of a concentration gradient.

Is there a relationship between μ and D ?

In summary:

μ relates to "ease" of carrier drift in an electric field.

D relates to "ease" of carrier diffusion as a result of a concentration gradient.

Is there a relationship between μ and D ?

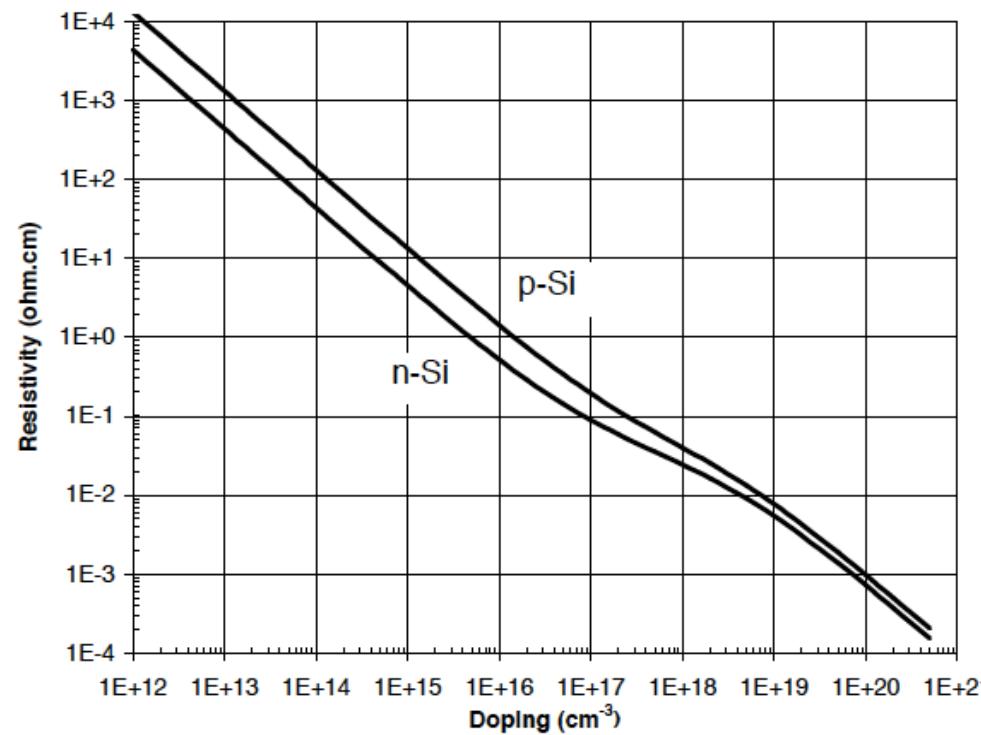
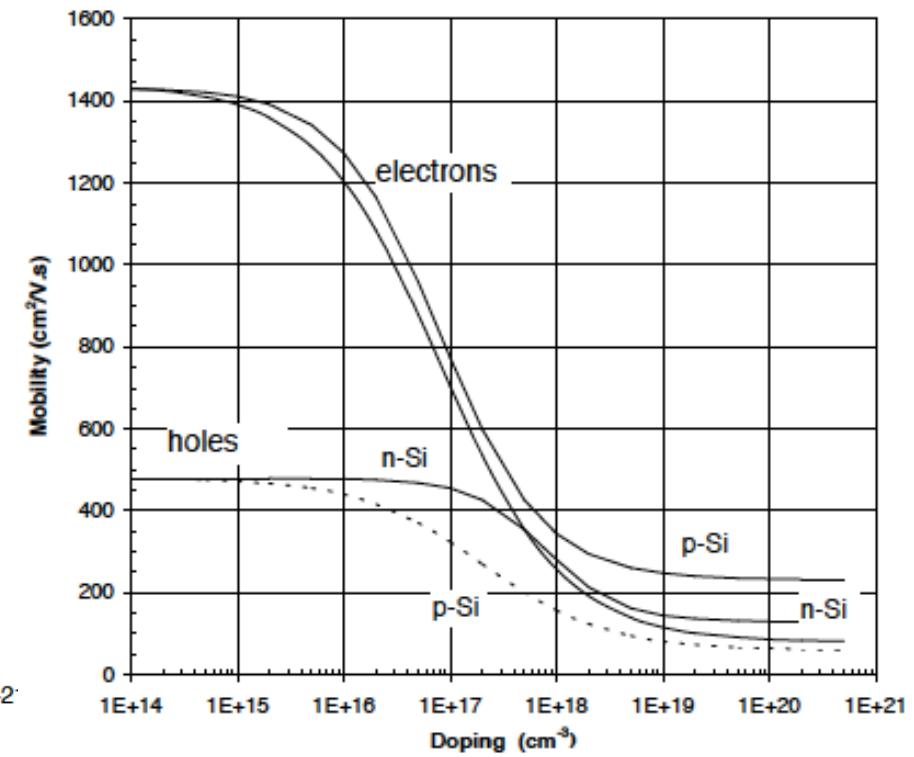
Yes, Einstein relation:

$$\frac{D_e}{\mu_e} = \frac{D_h}{\mu_h} = \frac{kT}{q}$$

Relationship between D and μ only depends on T .

Estimate the diffusion coefficients for electrons and holes,
for a p-type Si with resistivity of 0.1 ohm cm

Si at 300K:



At finite temperatures, carriers move around in a **random way** suffering many collisions: **thermal motion**.

Dominant scattering mechanisms in bulk Si at 300K: **phonon scattering** and **ionized impurity scattering**.

Two processes for carrier flow in semiconductors: **drift and diffusion**.

General relationship between carrier net velocity (by drift or diffusion) and current density:

$$J_e = -qnv_e \quad J_h = qpv_h$$

For low fields, $v_{drift} \sim E$

For high fields, $v_{drift} \sim v_{sat}$

Driving force for **diffusion**: **concentration gradient**.

Order of magnitude of key parameters for Si at 300K:

- electron mobility: $\mu_e \sim 100 - 1400 \text{ cm}^2/\text{V} \cdot \text{s}$
- hole mobility: $\mu_h \sim 50 - 500 \text{ cm}^2/\text{V} \cdot \text{s}$
- saturation velocity: $v_{sat} \sim 10^7 \text{ cm/s}$
- $v_{th} \sim 2 \times 10^7 \text{ cm/s}$
- $\tau_c < 1 \text{ ps}$
- $l_c < 50 \text{ nm}$